skip to main content


Search for: All records

Creators/Authors contains: "Kasmalkar, Indraneel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    As sea level rises, urban traffic networks in low-lying coastal areas face increasing risks of flood disruptions. Closure of flooded roads causes employee absences and delays, creating cascading impacts to communities. We integrate a traffic model with flood maps that represent potential combinations of storm surges, tides, seasonal cycles, interannual anomalies driven by large-scale climate variability such as the El Niño Southern Oscillation, and sea level rise. When identifying inundated roads, we propose corrections for potential biases arising from model integration. Our results for the San Francisco Bay Area show that employee absences are limited to the homes and workplaces within the areas of inundation, while delays propagate far inland. Communities with limited availability of alternate roads experience long delays irrespective of their proximity to the areas of inundation. We show that metric reach, a measure of road network density, is a better proxy for delays than flood exposure. 
    more » « less
  2. Abstract

    Many subglacial environments consist of a fine‐grained, deformable sediment bed, known as till, hosting an active hydrological system that routes meltwater. Observations show that the till undergoes substantial shear deformation as a result of the motion of the overlying ice. The deformation of the till, coupled with the dynamics of the hydrological system, is further affected by the substantial strain rate variability in subglacial conditions resulting from spatial heterogeneity at the bed. However, it is not clear if the relatively low magnitudes of strain rates affect the bed structure or its hydrology. We study how laterally varying shear along the ice‐bed interface alters sediment porosity and affects the flux of meltwater through the pore spaces. We use a discrete element model consisting of a collection of spherical, elasto‐frictional grains with water‐saturated pore spaces to simulate the deformation of the granular bed. Our results show that a deforming granular layer exhibits substantial spatial variability in porosity in the pseudo‐static shear regime, where shear strain rates are relatively low. In particular, laterally varying shear at the shearing interface creates a narrow zone of elevated porosity which has increased susceptibility to plastic failure. Despite the changes in porosity, our analysis suggests that the pore pressure equilibrates near‐instantaneously relative to the deformation at critical state, inhibiting potential strain rate dependence of the deformation caused by bed hardening or weakening resulting from pore pressure changes. We relate shear variation to porosity evolution and drainage element formation in actively deforming subglacial tills.

     
    more » « less